Euclid meets Popeye: The Euclidean Algorithm for $2\times 2$ Matrices

An analogue of the Euclidean algorithm for square matrices of size $2$ with integral non-negative entries and positive determinant $n$ defines a finite set $\mathcal{R}(n)$ of Euclid-reduced matrices corresponding to elements of $\lbrace (a,b,c,d)\in \mathbb{N}^4\ \vert \ n=ab-cd,\ 0\le c,d

Saved in:
Bibliographic Details
Main Author: Bacher, Roland
Format: Article
Language:English
Published: Académie des sciences 2023-07-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.451/
Tags: Add Tag
No Tags, Be the first to tag this record!