SL$_{4}(\textbf{Z})$ is not purely matricial field
We prove that every non-zero finite dimensional unitary representation of $\mathrm{SL}_{4}(\mathbf{Z})$ contains a non-zero $\mathrm{SL}_{2}(\mathbf{Z})$-invariant vector. As a consequence, there is no sequence of finite-dimensional representations of $\mathrm{SL}_{4}(\mathbf{Z})$ that gives rise to...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-10-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.617/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|