Synthetic augmentation of cancer cell line multi-omic datasets using unsupervised deep learning
Abstract Integrating diverse types of biological data is essential for a holistic understanding of cancer biology, yet it remains challenging due to data heterogeneity, complexity, and sparsity. Addressing this, our study introduces an unsupervised deep learning model, MOSA (Multi-Omic Synthetic Aug...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-54771-4 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|