SSL-MBC: Self-Supervised Learning With Multibranch Consistency for Few-Shot PolSAR Image Classification
Deep learning methods have recently made substantial advances in polarimetric synthetic aperture radar (PolSAR) image classification. However, supervised training relying on massive labeled samples is one of its major limitations, especially for PolSAR images that are hard to manually annotate. Self...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10839016/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|