Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
The $L^p$ convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for $p\ne 2$. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|