Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc

The $L^p$ convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for $p\ne 2$. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions...

Full description

Saved in:
Bibliographic Details
Main Author: Acosta Babb, Ryan Luis
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206258895945728
author Acosta Babb, Ryan Luis
author_facet Acosta Babb, Ryan Luis
author_sort Acosta Babb, Ryan Luis
collection DOAJ
description The $L^p$ convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for $p\ne 2$. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the $L^p$ convergence of the Bessel–Fourier series in the mixed norm space $L^p_{\mathrm{rad}}(L^2_{\mathrm{ang}})$ on the disk for the range $\tfrac{4}{3}
format Article
id doaj-art-ae36fb20ad484f1cabdceb1aaf576bca
institution Kabale University
issn 1778-3569
language English
publishDate 2023-10-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-ae36fb20ad484f1cabdceb1aaf576bca2025-02-07T11:09:55ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-10-01361G71075108010.5802/crmath.46410.5802/crmath.464Remarks on the $L^p$ convergence of Bessel–Fourier series on the discAcosta Babb, Ryan Luis0University of Warwick, United KingdomThe $L^p$ convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for $p\ne 2$. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the $L^p$ convergence of the Bessel–Fourier series in the mixed norm space $L^p_{\mathrm{rad}}(L^2_{\mathrm{ang}})$ on the disk for the range $\tfrac{4}{3}https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/
spellingShingle Acosta Babb, Ryan Luis
Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
Comptes Rendus. Mathématique
title Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
title_full Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
title_fullStr Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
title_full_unstemmed Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
title_short Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
title_sort remarks on the l p convergence of bessel fourier series on the disc
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/
work_keys_str_mv AT acostababbryanluis remarksonthelpconvergenceofbesselfourierseriesonthedisc