Optimal feedback control of dynamical systems via value-function approximation

A self-learning approach for optimal feedback gains for finite-horizon nonlinear continuous time control systems is proposed and analysed. It relies on parameter dependent approximations to the optimal value function obtained from a family of universal approximators. The cost functional for the trai...

Full description

Saved in:
Bibliographic Details
Main Authors: Kunisch, Karl, Walter, Daniel
Format: Article
Language:English
Published: Académie des sciences 2023-07-01
Series:Comptes Rendus. Mécanique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.199/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206033807572992
author Kunisch, Karl
Walter, Daniel
author_facet Kunisch, Karl
Walter, Daniel
author_sort Kunisch, Karl
collection DOAJ
description A self-learning approach for optimal feedback gains for finite-horizon nonlinear continuous time control systems is proposed and analysed. It relies on parameter dependent approximations to the optimal value function obtained from a family of universal approximators. The cost functional for the training of an approximate optimal feedback law incorporates two main features. First, it contains the average over the objective functional values of the parametrized feedback control for an ensemble of initial values. Second, it is adapted to exploit the relationship between the maximum principle and dynamic programming. Based on universal approximation properties, existence, convergence and first order optimality conditions for optimal neural network feedback controllers are proved.
format Article
id doaj-art-c490b99b8edd48879a03e966ad1b19a4
institution Kabale University
issn 1873-7234
language English
publishDate 2023-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mécanique
spelling doaj-art-c490b99b8edd48879a03e966ad1b19a42025-02-07T13:46:20ZengAcadémie des sciencesComptes Rendus. Mécanique1873-72342023-07-01351S153557110.5802/crmeca.19910.5802/crmeca.199Optimal feedback control of dynamical systems via value-function approximationKunisch, Karl0Walter, Daniel1Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria; University of Graz, Institute of Mathematics and Scientific Computing, Heinrichstr. 36, A-8010 Graz, AustriaInstitut für Mathematik, Humboldt-Universität zu Berlin, Rudower Chaussee 25, 10117 Berlin, GermanyA self-learning approach for optimal feedback gains for finite-horizon nonlinear continuous time control systems is proposed and analysed. It relies on parameter dependent approximations to the optimal value function obtained from a family of universal approximators. The cost functional for the training of an approximate optimal feedback law incorporates two main features. First, it contains the average over the objective functional values of the parametrized feedback control for an ensemble of initial values. Second, it is adapted to exploit the relationship between the maximum principle and dynamic programming. Based on universal approximation properties, existence, convergence and first order optimality conditions for optimal neural network feedback controllers are proved.https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.199/optimal feedback controlneural networksHamilton–Jacobi–Bellman equationself-learningreinforcement learning
spellingShingle Kunisch, Karl
Walter, Daniel
Optimal feedback control of dynamical systems via value-function approximation
Comptes Rendus. Mécanique
optimal feedback control
neural networks
Hamilton–Jacobi–Bellman equation
self-learning
reinforcement learning
title Optimal feedback control of dynamical systems via value-function approximation
title_full Optimal feedback control of dynamical systems via value-function approximation
title_fullStr Optimal feedback control of dynamical systems via value-function approximation
title_full_unstemmed Optimal feedback control of dynamical systems via value-function approximation
title_short Optimal feedback control of dynamical systems via value-function approximation
title_sort optimal feedback control of dynamical systems via value function approximation
topic optimal feedback control
neural networks
Hamilton–Jacobi–Bellman equation
self-learning
reinforcement learning
url https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.199/
work_keys_str_mv AT kunischkarl optimalfeedbackcontrolofdynamicalsystemsviavaluefunctionapproximation
AT walterdaniel optimalfeedbackcontrolofdynamicalsystemsviavaluefunctionapproximation