Surfaces of infinite-type are non-Hopfian
We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-10-01
|
Series: | Comptes Rendus. Mathématique |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|