Surfaces of infinite-type are non-Hopfian

We show that finite-type surfaces are characterized by a topological analogue of the Hopf property. Namely, an oriented surface $\Sigma $ is of finite-type if and only if every proper map $f\colon \,\Sigma \rightarrow \Sigma $ of degree one is homotopic to a homeomorphism.

Saved in:
Bibliographic Details
Main Authors: Das, Sumanta, Gadgil, Siddhartha
Format: Article
Language:English
Published: Académie des sciences 2023-10-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.504/
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items